Open Access
February 2007 On the maximum bias functions of MM-estimates and constrained M-estimates of regression
José R. Berrendero, Beatriz V. M. Mendes, David E. Tyler
Ann. Statist. 35(1): 13-40 (February 2007). DOI: 10.1214/009053606000000975

Abstract

We derive the maximum bias functions of the MM-estimates and the constrained M-estimates or CM-estimates of regression and compare them to the maximum bias functions of the S-estimates and the τ-estimates of regression. In these comparisons, the CM-estimates tend to exhibit the most favorable bias-robustness properties. Also, under the Gaussian model, it is shown how one can construct a CM-estimate which has a smaller maximum bias function than a given S-estimate, that is, the resulting CM-estimate dominates the S-estimate in terms of maxbias and, at the same time, is considerably more efficient.

Citation

Download Citation

José R. Berrendero. Beatriz V. M. Mendes. David E. Tyler. "On the maximum bias functions of MM-estimates and constrained M-estimates of regression." Ann. Statist. 35 (1) 13 - 40, February 2007. https://doi.org/10.1214/009053606000000975

Information

Published: February 2007
First available in Project Euclid: 6 June 2007

zbMATH: 1114.62030
MathSciNet: MR2332267
Digital Object Identifier: 10.1214/009053606000000975

Subjects:
Primary: 62F35
Secondary: 62J05

Keywords: Breakdown point , constrained M-estimates , gross error sensitivity , maximum bias curves , M-estimates , robust regression , S-estimates

Rights: Copyright © 2007 Institute of Mathematical Statistics

Vol.35 • No. 1 • February 2007
Back to Top