Abstract
Let there be given a contaminated list of n ℝd-valued observations coming from g different, normally distributed populations with a common covariance matrix. We compute the ML-estimator with respect to a certain statistical model with n−r outliers for the parameters of the g populations; it detects outliers and simultaneously partitions their complement into g clusters. It turns out that the estimator unites both the minimum-covariance-determinant rejection method and the well-known pooled determinant criterion of cluster analysis. We also propose an efficient algorithm for approximating this estimator and study its breakdown points for mean values and pooled SSP matrix.
Citation
María Teresa Gallegos. Gunter Ritter. "A robust method for cluster analysis." Ann. Statist. 33 (1) 347 - 380, February 2005. https://doi.org/10.1214/009053604000000940
Information