Abstract
In this paper, we study the problems of sequential probability ratio tests for parameterized hidden Markov models. We investigate in some detail the performance of the tests and derive corrected Brownian approximations for error probabilities and expected sample sizes. Asymptotic optimality of the sequential probability ratio test for testing simple hypotheses based on hidden Markov chain data is established. Next, we consider the cumulative sum (CUSUM) procedure for change point detection in this model. Based on the renewal property of the stopping rule, CUSUM can be regarded as a repeated one-sided sequential probability ratio test. Asymptotic optimality of the CUSUM procedure is proved in the sense of Lorden (1971). Motivated by the sequential analysis in hidden Markov models, Wald's likelihood ratio identity and Wald's equation for products of Markov random matrices are also given. We apply these results to several types of hidden Markov models: i.i.d. hidden Markov models, switch Gaussian regression and switch Gaussian autoregression, which are commonly used in digital communications, speech recognition, bioinformatics and economics.
Citation
Cheng-Der Fuh. "SPRT and CUSUM in hidden Markov models." Ann. Statist. 31 (3) 942 - 977, June 2003. https://doi.org/10.1214/aos/1056562468
Information