Open Access
Februrary 2003 The complex Wishart distribution and the symmetric group
Piotr Graczyk, Gérard Letac, Hélène Massam
Ann. Statist. 31(1): 287-309 (Februrary 2003). DOI: 10.1214/aos/1046294466

Abstract

Let V be the space of (r,r) Hermitian matrices and let $\Omega$ be the cone of the positive definite ones. We say that the random variable S, taking its values in $\overline{\Omega},$ has the complex Wishart distribution $\gamma_{p,\sigma}$ if $\mathbb{E}(\exp \,\tr (\theta S))=(\det (I_r-\sigma\theta))^{-p},$ where $\sigma$ and $\sigma^{-1}-\theta$ are in $\Omega,$ and where p=1,2,...,r-1 or p>r-1. In this paper, we compute all moments of $S$ and $S^{-1}.$ The techniques involve in particular the use of the irreducible characters of the symmetric group.

Citation

Download Citation

Piotr Graczyk. Gérard Letac. Hélène Massam. "The complex Wishart distribution and the symmetric group." Ann. Statist. 31 (1) 287 - 309, Februrary 2003. https://doi.org/10.1214/aos/1046294466

Information

Published: Februrary 2003
First available in Project Euclid: 26 February 2003

zbMATH: 1019.62047
MathSciNet: MR1962508
Digital Object Identifier: 10.1214/aos/1046294466

Subjects:
Primary: 62H05
Secondary: 60E05 , 62E17

Keywords: complex Wishart , irreducible representations , moments , Schur polynomials , Symmetric group

Rights: Copyright © 2003 Institute of Mathematical Statistics

Vol.31 • No. 1 • Februrary 2003
Back to Top