Abstract
Let V be the space of (r,r) Hermitian matrices and let $\Omega$ be the cone of the positive definite ones. We say that the random variable S, taking its values in $\overline{\Omega},$ has the complex Wishart distribution $\gamma_{p,\sigma}$ if $\mathbb{E}(\exp \,\tr (\theta S))=(\det (I_r-\sigma\theta))^{-p},$ where $\sigma$ and $\sigma^{-1}-\theta$ are in $\Omega,$ and where p=1,2,...,r-1 or p>r-1. In this paper, we compute all moments of $S$ and $S^{-1}.$ The techniques involve in particular the use of the irreducible characters of the symmetric group.
Citation
Piotr Graczyk. Gérard Letac. Hélène Massam. "The complex Wishart distribution and the symmetric group." Ann. Statist. 31 (1) 287 - 309, Februrary 2003. https://doi.org/10.1214/aos/1046294466
Information