Open Access
October 1999 Optimal convergence rates for Good's nonparametric maximum likelihood density estimator
P. P. B. Eggermont, V. N. LaRiccia
Ann. Statist. 27(5): 1600-1615 (October 1999). DOI: 10.1214/aos/1017939143

Abstract

We study maximum penalized likelihood density estimation using the first roughness penalty functional of Good. We prove a simple pointwise comparison result with a kernel estimator based on the two-sided exponential kernel. This leads to $L^1$ convergence results similar to those for kernel estimators. We also prove Hellinger distance bounds for the roughness penalized estimator.

Citation

Download Citation

P. P. B. Eggermont. V. N. LaRiccia. "Optimal convergence rates for Good's nonparametric maximum likelihood density estimator." Ann. Statist. 27 (5) 1600 - 1615, October 1999. https://doi.org/10.1214/aos/1017939143

Information

Published: October 1999
First available in Project Euclid: 23 September 2004

zbMATH: 0957.62039
MathSciNet: MR2001A:62045
Digital Object Identifier: 10.1214/aos/1017939143

Subjects:
Primary: 62G07

Keywords: Hellinger distance , maximum likelihood , Nonparametric density estimation , roughness penalization

Rights: Copyright © 1999 Institute of Mathematical Statistics

Vol.27 • No. 5 • October 1999
Back to Top