Open Access
August 1997 Asymptotic inference for near unit roots in spatial autoregression
B. B. Bhattacharyya, G. D. Richardson, L. A. Franklin
Ann. Statist. 25(4): 1709-1724 (August 1997). DOI: 10.1214/aos/1031594738

Abstract

Asymptotic inference for estimators of $(\alpha_n, \beta_n)$ in the spatial autoregressive model $Z_{ij}(n) = \alpha_n Z_{i-1, j}(n) + \beta_n Z_{i, j-1}(n) - \alpha_n \beta_n Z_{i-1, j-1}(n) + \varepsilon_{ij}$ is obtained when $\alpha_n$ and $\beta_n$ are near unit roots. When $\alpha_n$ and $\beta_n$ are reparameterized by $\alpha_n = e^{c/n}$ and $\beta_n = e^{d/n}$, it is shown that if the "one-step Gauss-Newton estimator" of $\lambda_1 \alpha_n + \lambda_2 \beta_n$ is properly normalized and embedded in the function space $D([0, 1]^2)$, the limiting distribution is a Gaussian process. The key idea in the proof relies on a maximal inequality for a two-parameter martingale which may be of independent interest. A simulation study illustrates the speed of convergence and goodness-of-fit of these estimators for various sample sizes.

Citation

Download Citation

B. B. Bhattacharyya. G. D. Richardson. L. A. Franklin. "Asymptotic inference for near unit roots in spatial autoregression." Ann. Statist. 25 (4) 1709 - 1724, August 1997. https://doi.org/10.1214/aos/1031594738

Information

Published: August 1997
First available in Project Euclid: 9 September 2002

zbMATH: 0890.62018
MathSciNet: MR1463571
Digital Object Identifier: 10.1214/aos/1031594738

Subjects:
Primary: 62F12 , 62M30
Secondary: 60F17

Keywords: central limit theory , Gauss-Newton estimation , near unit roots , Spatial autoregressive process

Rights: Copyright © 1997 Institute of Mathematical Statistics

Vol.25 • No. 4 • August 1997
Back to Top