Open Access
December 1996 A constrained risk inequality with applications to nonparametric functional estimation
Lawrence D. Brown, Mark G. Low
Ann. Statist. 24(6): 2524-2535 (December 1996). DOI: 10.1214/aos/1032181166

Abstract

A general constrained minimum risk inequality is derived. Given two densities $f_{\theta}$ and $f_0$ we find a lower bound for the risk at the point $\theta$ given an upper bound for the risk at the point 0. The inequality sheds new light on superefficient estimators in the normal location problem and also on an adaptive estimation problem arising in nonparametric functional estimation.

Citation

Download Citation

Lawrence D. Brown. Mark G. Low. "A constrained risk inequality with applications to nonparametric functional estimation." Ann. Statist. 24 (6) 2524 - 2535, December 1996. https://doi.org/10.1214/aos/1032181166

Information

Published: December 1996
First available in Project Euclid: 16 September 2002

zbMATH: 0867.62023
MathSciNet: MR1425965
Digital Object Identifier: 10.1214/aos/1032181166

Subjects:
Primary: 62G99
Secondary: 62F12 , 62F35 , 62M99

Keywords: adaptive estimation , Density estimation , minimum risk inequalities , Nonparametric functional estimation , Nonparametric regression , superefficient estimators , White noise model

Rights: Copyright © 1996 Institute of Mathematical Statistics

Vol.24 • No. 6 • December 1996
Back to Top