Abstract
In this article we study function estimation via wavelet shrinkage for data with long-range dependence. We propose a fractional Gaussian noise model to approximate nonparametric regression with long-range dependence and establish asymptotics for minimax risks. Because of long-range dependence, the minimax risk and the minimax linear risk converge to 0 at rates that differ from those for data with independence or short-range dependence. Wavelet estimates with best selection of resolution level-dependent threshold achieve minimax rates over a wide range of spaces. Cross-validation for dependent data is proposed to select the optimal threshold. The wavelet estimates significantly outperform linear estimates. The key to proving the asymptotic results is a wavelet-vaguelette decomposition which decorrelates fractional Gaussian noise. Such wavelet-vaguelette decomposition is also very useful in fractal signal processing.
Citation
Yazhen Wang. "Function estimation via wavelet shrinkage for long-memory data." Ann. Statist. 24 (2) 466 - 484, April 1996. https://doi.org/10.1214/aos/1032894449
Information