Abstract
Suppose that $X_{\sigma} | \mathbf{\theta} \sim N(\mathbf{\theta}, \sigma^2)$ and that $\sigma \to 0$. For which prior distributions on $\mathbf{\theta}$ is the posterior distribution of $\mathbf{\theta}$ given $X_{\sigma}$ asymptotically $N(X_{\sigma}, \sigma^2)$ when in fact $X_{\sigma} \sim N(\theta_0, \sigma^2)$? It is well known that the stated convergence occurs when $\mathbf{\theta}$ has a prior density that is positive and continuous at $\theta_0$. It turns out that the necessary and sufficient conditions for convergence allow a wider class of prior distributions--the locally uniform and tail-bounded prior distributions. This class includes certain discrete prior distributions that may be used to reproduce minimum description length approaches to estimation and model selection.
Citation
J. A. Hartigan. "Locally uniform prior distributions." Ann. Statist. 24 (1) 160 - 173, February 1996. https://doi.org/10.1214/aos/1033066204
Information