Open Access
December, 1993 The Rate of Convergence for Multivariate Sampling Statistics
Erwin Bolthausen, Friedrich Gotze
Ann. Statist. 21(4): 1692-1710 (December, 1993). DOI: 10.1214/aos/1176349393

Abstract

A Berry-Esseen theorem for the rate of convergence of general nonlinear multivariate sampling statistics with normal limit distribution is derived via a multivariate extension of Stein's method. The result generalizes in particular previous results of Bolthausen for one-dimensional linear rank statistics, one-dimensional results of van Zwet and Friedrich for general functions of independent random elements and provides convergence bounds for general multivariate sampling statistics without restrictions on the sampling proportions.

Citation

Download Citation

Erwin Bolthausen. Friedrich Gotze. "The Rate of Convergence for Multivariate Sampling Statistics." Ann. Statist. 21 (4) 1692 - 1710, December, 1993. https://doi.org/10.1214/aos/1176349393

Information

Published: December, 1993
First available in Project Euclid: 12 April 2007

zbMATH: 0798.62023
MathSciNet: MR1245764
Digital Object Identifier: 10.1214/aos/1176349393

Subjects:
Primary: 60F05
Secondary: 62E20

Keywords: Berry-Esseen theorem , multivariate central limit theorem , rank statistics , sampling statistics

Rights: Copyright © 1993 Institute of Mathematical Statistics

Vol.21 • No. 4 • December, 1993
Back to Top