Abstract
Let $X_1, X_2, \ldots$ be a sequence of i.i.d. random variables with d.f. $F$. We observe $Z_i = \min(X_i,Y_i)$ and $\delta_i = 1_{\{X_i \leq Y_i\}}$, where $Y_1, Y_2, \ldots$ is a sequence of i.i.d. censoring random variables. Denote by $\hat{F}_n$ the Kaplan-Meier estimator of $F$. We show that for any $F$-integrable function $\varphi, \int\varphi d\hat{F}_n$ converges almost surely and in the mean. The result may be applied to yield consistency of many estimators under random censorship.
Citation
W. Stute. J.-L. Wang. "The Strong Law under Random Censorship." Ann. Statist. 21 (3) 1591 - 1607, September, 1993. https://doi.org/10.1214/aos/1176349273
Information