Open Access
September, 1993 Lattice Models for Conditional Independence in a Multivariate Normal Distribution
Steen Arne Andersson, Michael D. Perlman
Ann. Statist. 21(3): 1318-1358 (September, 1993). DOI: 10.1214/aos/1176349261

Abstract

The lattice conditional independence model $\mathbf{N}(\mathscr{K})$ is defined to be the set of all normal distributions on $\mathbb{R}^I$ such that for every pair $L, M \in \mathscr{K}, x_L$ and $x_M$ are conditionally independent given $x_{L \cap M}$. Here $\mathscr{K}$ is a ring of subsets of the finite index set $I$ and, for $K \in \mathscr{K}, x_K$ is the coordinate projection of $x \in \mathbb{R}^I$ onto $\mathbb{R}^K$. Statistical properties of $\mathbf{N}(\mathscr{K})$ may be studied, for example, maximum likelihood inference, invariance and the problem of testing $H_0: \mathbf{N}(\mathscr{K})$ vs. $H: \mathbf{N}(\mathscr{M})$ when $\mathscr{M}$ is a subring of $\mathscr{K}$. The set $J(\mathscr{K})$ of join-irreducible elements of $\mathscr{K}$ plays a central role in the analysis of $\mathbf{N}(\mathscr{K})$. This class of statistical models occurs in the analysis of nonnested multivariate missing data patterns and nonnested dependent linear regression models.

Citation

Download Citation

Steen Arne Andersson. Michael D. Perlman. "Lattice Models for Conditional Independence in a Multivariate Normal Distribution." Ann. Statist. 21 (3) 1318 - 1358, September, 1993. https://doi.org/10.1214/aos/1176349261

Information

Published: September, 1993
First available in Project Euclid: 12 April 2007

zbMATH: 0803.62042
MathSciNet: MR1241268
Digital Object Identifier: 10.1214/aos/1176349261

Subjects:
Primary: 62H12
Secondary: 62H15 , 62H20 , 62H25

Keywords: Distributive lattice , generalized block-triangular matrices , join-irreducible elements , maximum likelihood estimator , multivariate normal distribution , nonested missing data , nonnested linear regressions , pairwise conditional independence , quotient space

Rights: Copyright © 1993 Institute of Mathematical Statistics

Vol.21 • No. 3 • September, 1993
Back to Top