Abstract
Consider the model where $X_{ij}, i = 1,\ldots, k; j = 1,2,\ldots, n_i; n_i \geq 2$, are observed. Here $X_{ij}$ are independent $N(\theta_i,\sigma^2), \theta_i, \sigma^2$ unknown. Let $X_i = \sum^n_{j = 1}X_{ij}/n_i, \mathbf{X}' = (X_1,\ldots, X_k), \mathbf{\theta}' = (\theta_1,\ldots,\theta_k), V = \sum^k_{i = 1} \sum^{n_i}_{j = 1}X^2_{ij} - n \sum^k_{i = 1}X^2_i$. Let $\mathbf{A}_1$ be a $(k - m) \times k$ matrix of rank $(k - m) \geq 2$ and test $H: \mathbf{A}_1\mathbf{\theta} = \mathbf{0}$ versus $K - H$ where $K: \mathbf{A}_1\mathbf{\theta} \geq \mathbf{0}$. Suppose we assume $\sigma^2$ known and consider a constant size $\alpha$ test $(\alpha < 1/2)$ which is admissible for $H$ versus $K - H$ based on $\mathbf{X}$. Next assume $\sigma^2$ is unknown. Consider the same test but now as a function of $\mathbf{X}/V^{1/2}$ (i.e., Studentize the test). The resulting test is inadmissible. Examples are noted.
Citation
Arthur Cohen. H. B. Sackrowitz. "Inadmissibility of Studentized Tests for Normal Order Restricted Models." Ann. Statist. 21 (2) 746 - 752, June, 1993. https://doi.org/10.1214/aos/1176349148
Information