Abstract
Consider a class $\mathscr{P}={P_\theta:\theta\in\Theta}$ of probability measures on a measurable space $(\mathscr{X},\mathscr{A})$, dominated by a $\sigma$ -finite measure $\mu$. Let $f_\theta=dP_\theta/d_\mu$, $\theta\ in\Theta$, and let $\theta_n$ be a maximum likelihood estimator based on n independent observations from $P_{\theta_0}$, $\theta_0\in\Theta$. We use results from empirical process theory to obtain convergence for the Hellinger distance $h(f_{\hat{\theta}_n}, f_{\theta_0})$, under certain entropy conditions on the class of densities ${f_\theta:\theta\in\Theta}$ The examples we present are a model with interval censored observations, smooth densities, monotone densities and convolution models. In most examples, the convexity of the class of densities is of special importance.
Citation
Sara van de Geer. "Hellinger-Consistency of Certain Nonparametric Maximum Likelihood Estimators." Ann. Statist. 21 (1) 14 - 44, March, 1993. https://doi.org/10.1214/aos/1176349013
Information