Open Access
March, 1990 On Minimax Estimation in the Presence of Side Information About Remote Data
R. Ahlswede, M. V. Burnashev
Ann. Statist. 18(1): 141-171 (March, 1990). DOI: 10.1214/aos/1176347496

Abstract

We analyze the following model: One person, called "helper" observes an outcome $x^n = (x_1, \cdots, x_n) \in \mathscr{X}^n$ of the sequence $X^n = (X_1, \cdots, X_n)$ of i.i.d. RV's and the statistician gets a sample $y^n = (y_1, \cdots, y_n)$ of the sequence $Y^n(\theta, x^n)$ of RV's with a density $\prod^n_{t = 1} f(y_t \mid \theta, x_t)$. The helper can give some (side) information about $x^n$ to the statistician via an encoding function $s_n: \mathscr{X}^n \rightarrow \mathbb{N}$ with rate($s_n)^{def}{=}(1/n)\log {\tt\#}$ range($s_n) \leq R$. Based on the knowledge of $s_n(x^n)$ and $y^n$ the statistician tries to estimate $\theta$ by an estimator $\hat{\theta}_n$. For the maximal mean square error $e_n(R) =^{def} \inf_{\hat\theta_n} \inf_{s_n: \text{rate}}(s_n) \leq R \sup_{\theta \in \Theta} E_\theta|\hat{\theta}_n - \theta|^2$ we establish a Cramer-Rao type bound and, in case of a finite $\mathscr{X}$, prove asymptotic achievability of this bound under certain conditions. The proof involves a nonobvious combination of results (some of which are novel) for both coding and estimation.

Citation

Download Citation

R. Ahlswede. M. V. Burnashev. "On Minimax Estimation in the Presence of Side Information About Remote Data." Ann. Statist. 18 (1) 141 - 171, March, 1990. https://doi.org/10.1214/aos/1176347496

Information

Published: March, 1990
First available in Project Euclid: 12 April 2007

zbMATH: 0712.62023
MathSciNet: MR1041389
Digital Object Identifier: 10.1214/aos/1176347496

Subjects:
Primary: 62A99
Secondary: 62F12 , 62N99 , 94A15

Keywords: Cramer-Rao-type inequality , efficiency , information measures , multiuser source coding , Side information

Rights: Copyright © 1990 Institute of Mathematical Statistics

Vol.18 • No. 1 • March, 1990
Back to Top