Abstract
We consider the problem of robustness or sensitivity of given Bayesian posterior criteria to specification of the prior distribution. Criteria considered include the posterior mean, variance and probability of a set (for credible regions and hypothesis testing). Uncertainty in an elicited prior, $\pi_0$, is modelled by an $\varepsilon$-contamination class $\Gamma = \{\pi = (1 - \varepsilon)\pi_0 + \varepsilon q, q \in Q\}$, where $\varepsilon$ reflects the amount of probabilistic uncertainty in $\pi_0$, and $Q$ is a class of allowable contaminations. For $Q = \{$all unimodal distributions$\}$ and $Q = \{\text{all symmetric unimodal distributions}\}$, we determine the ranges of the various posterior criteria as $\pi$ varies over $\Gamma$.
Citation
S. Sivaganesan. James O. Berger. "Ranges of Posterior Measures for Priors with Unimodal Contaminations." Ann. Statist. 17 (2) 868 - 889, June, 1989. https://doi.org/10.1214/aos/1176347148
Information