Translator Disclaimer
December, 1985 Estimation Problems for Samples with Measurement Errors
Wolfgang Stadje
Ann. Statist. 13(4): 1592-1615 (December, 1985). DOI: 10.1214/aos/1176349757

Abstract

For $x \in \mathbb{R}$ let $N_\alpha(x) := m\alpha, \operatorname{iff} x \in (\alpha m - \alpha/2, \alpha m + \alpha/2\rbrack$. For a sample $X_1,\ldots, X_n$ we mainly study the asymptotic properties of the estimators $\bar{N}_\alpha := 1/n\sum^n_{i = 1} N_\alpha(X_i)$ and $S^2_\alpha := 1/(n - 1)\sum^n_{i = 1}(N_\alpha(X_i) - \overline{N}_\alpha)^2$ for $\alpha = \alpha_n \rightarrow 0,$ as $n \rightarrow \infty.$ For example, if $E(X^2) < \infty, E(e^{itX}) = o(|t|^{-k}),(|r| \rightarrow\infty)$ for some $k \in \mathbb{N}$ and $\alpha_n = O(n^{-1/(2k + 2)})$ or $X \sim N(\theta, \sigma^2)$ and $\alpha_n \leq 2\pi\sigma(\log n)^{-1/2,}$ we prove that $\sqrt{n}(\overline{N}_{\alpha n} - EX)$ is asymptotically normal. Problems of truncation as well as general maximum likelihood estimation from discrete scale measurements are also considered.

Citation

Download Citation

Wolfgang Stadje. "Estimation Problems for Samples with Measurement Errors." Ann. Statist. 13 (4) 1592 - 1615, December, 1985. https://doi.org/10.1214/aos/1176349757

Information

Published: December, 1985
First available in Project Euclid: 12 April 2007

zbMATH: 0591.62025
MathSciNet: MR811512
Digital Object Identifier: 10.1214/aos/1176349757

Subjects:
Primary: 62F10
Secondary: 62E20

Rights: Copyright © 1985 Institute of Mathematical Statistics

JOURNAL ARTICLE
24 PAGES


SHARE
Vol.13 • No. 4 • December, 1985
Back to Top