Open Access
December, 1983 On the Consistency of Cross-Validation in Kernel Nonparametric Regression
Wing Hung Wong
Ann. Statist. 11(4): 1136-1141 (December, 1983). DOI: 10.1214/aos/1176346327

Abstract

For the nonparametric regression model $Y(t_i) = \theta(t_i) + \varepsilon(t_i)$ where $\theta$ is a smooth function to be estimated, $t_i$'s are nonrandom, $\varepsilon(t_i)$'s are i.i.d. errors, this paper studies the behavior of the kernel regression estimate $\hat{\theta}(t) = \big\lbrack \sum^n_{j=1}K \big(\frac{t_j - t}{\lambda}\big) Y(t_j) \big\rbrack / \big\lbrack\ sum^n_{j=1} K \big(\frac{t_j - t}{\lambda}\big) \big\rbrack$ when $\lambda$ is chosen by cross-validation on the average squared error. Strong consistency in terms of the average squared error is established for uniform spacing, compact kernel and finite fourth error moment.

Citation

Download Citation

Wing Hung Wong. "On the Consistency of Cross-Validation in Kernel Nonparametric Regression." Ann. Statist. 11 (4) 1136 - 1141, December, 1983. https://doi.org/10.1214/aos/1176346327

Information

Published: December, 1983
First available in Project Euclid: 12 April 2007

zbMATH: 0539.62046
MathSciNet: MR720259
Digital Object Identifier: 10.1214/aos/1176346327

Subjects:
Primary: 62G05

Keywords: consistency , cross-validation , kernel estimate , Nonparametric regression

Rights: Copyright © 1983 Institute of Mathematical Statistics

Vol.11 • No. 4 • December, 1983
Back to Top