Abstract
The statistical properties of a cubic smoothing spline and its derivative are analyzed. It is shown that unless unnatural boundary conditions hold, the integrated squared bias is dominated by local effects near the boundary. Similar effects are shown to occur in the regularized solution of a translation-kernel integral equation. These results are derived by developing a Fourier representation for a smoothing spline.
Citation
John Rice. Murray Rosenblatt. "Smoothing Splines: Regression, Derivatives and Deconvolution." Ann. Statist. 11 (1) 141 - 156, March, 1983. https://doi.org/10.1214/aos/1176346065
Information