Abstract
Let $X$ be a real valued random variable with probability distribution function $F(x)$ and characteristic function $c(t)$. Let $F_n(x)$ be the $n$th empirical distribution function associated with $X$ and $c_n(t)$ the characteristic function of $F_n(x)$. Necessary and sufficient conditions are obtained for the weak convergence of $\sqrt{n}\lbrack c_n(t) - c(t)\rbrack$ on the space of continuous complex valued functions on $\lbrack -1/2, 1/2\rbrack$.
Citation
Michael B. Marcus. "Weak Convergence of the Empirical Characteristic Function." Ann. Probab. 9 (2) 194 - 201, April, 1981. https://doi.org/10.1214/aop/1176994461
Information