Open Access
December, 1980 Sizes of Order Statistical Events of Stationary Processes
Daniel Rudolph, J. Michael Steele
Ann. Probab. 8(6): 1079-1084 (December, 1980). DOI: 10.1214/aop/1176994569

Abstract

Given a process $\{X_i\}$, any permutation $\sigma: \lbrack 1, n\rbrack \rightarrow \lbrack 1, n\rbrack$ determines an order statistical event $A(\sigma) = \{X_{\sigma(1)} < X_{\sigma(2)} < \cdots < X_{\sigma(n)}\}$. How many events $A(\sigma)$ are needed to form a union whose probability exceeds $1 - \epsilon$? This question is answered in the case of stationary ergodic processes with finite entropy.

Citation

Download Citation

Daniel Rudolph. J. Michael Steele. "Sizes of Order Statistical Events of Stationary Processes." Ann. Probab. 8 (6) 1079 - 1084, December, 1980. https://doi.org/10.1214/aop/1176994569

Information

Published: December, 1980
First available in Project Euclid: 19 April 2007

zbMATH: 0461.60053
MathSciNet: MR602381
Digital Object Identifier: 10.1214/aop/1176994569

Subjects:
Primary: 60G10
Secondary: 60005

Keywords: de Bruijn sequences , directed graphs , Entropy , equipartition property , order statistics , Stationary processes

Rights: Copyright © 1980 Institute of Mathematical Statistics

Vol.8 • No. 6 • December, 1980
Back to Top