Open Access
June, 1980 Tight Bounds for the Renewal Function of a Random Walk
D. J. Daley
Ann. Probab. 8(3): 615-621 (June, 1980). DOI: 10.1214/aop/1176994732


It is shown that for a random walk $\{S_n\}$ starting at the origin having generic step random variable $X$ with finite second moment and positive mean $\lambda^{-1} = EX$, the renewal function $U(y) = E {\tt\#}\{n = 0,1, \cdots: S_n \leqslant y\}$ satisfies for $y \geqslant 0$ $$|U(y) - \lambda y - \frac{1}{2}\lambda^2EX^2| \leqslant \frac{1}{2}\lambda^2EX^2 - \lambda EM \leqslant \frac{1}{2}\lambda^2EX^2_+$$ where $M = - \inf_{n\geqslant 0}S_n$. Both the upper and lower bounds are attained by simple random walk. Bounds are also given for $U(-y)(y \geqslant 0)$ and for the renewal function of a transient renewal process when $\Pr\{X \geqslant 0\} = 1 > \Pr\{0 \leqslant X < \infty\}$. The proof uses a Wiener-Hopf like identity relating $U$ to the renewal functions of the ascending and descending ladder processes to which Lorden's tight bound for the renewal process case is applied.


Download Citation

D. J. Daley. "Tight Bounds for the Renewal Function of a Random Walk." Ann. Probab. 8 (3) 615 - 621, June, 1980.


Published: June, 1980
First available in Project Euclid: 19 April 2007

zbMATH: 0434.60087
MathSciNet: MR573298
Digital Object Identifier: 10.1214/aop/1176994732

Primary: 60K05
Secondary: 60K25

Keywords: ladder variables , Renewal function bounds

Rights: Copyright © 1980 Institute of Mathematical Statistics

Vol.8 • No. 3 • June, 1980
Back to Top