Open Access
April, 1980 Limit Theorems Without Moment Hypotheses for Sums of Independent Random Variables
R. J. Tomkins
Ann. Probab. 8(2): 314-324 (April, 1980). DOI: 10.1214/aop/1176994779

Abstract

Let $\{S_n\}$ be the partial sums of a sequence of independent random variables and let $\{a_n\}$ be a nondecreasing, divergent real sequence. Necessary and sufficient conditions for $\lim \sup_{n\rightarrow\infty}S_n/a_n < \infty$ a.s. are given under mild conditions on $\{S_n\}$; these conditions do not involve the existence of any moments. These results are employed to widen the scope of the law of the iterated logarithm.

Citation

Download Citation

R. J. Tomkins. "Limit Theorems Without Moment Hypotheses for Sums of Independent Random Variables." Ann. Probab. 8 (2) 314 - 324, April, 1980. https://doi.org/10.1214/aop/1176994779

Information

Published: April, 1980
First available in Project Euclid: 19 April 2007

zbMATH: 0432.60034
MathSciNet: MR566596
Digital Object Identifier: 10.1214/aop/1176994779

Subjects:
Primary: 60F15
Secondary: 60G50

Keywords: Almost sure convergence , almost sure stability , Independent random variables , Law of iterated logarithm , limit theorems

Rights: Copyright © 1980 Institute of Mathematical Statistics

Vol.8 • No. 2 • April, 1980
Back to Top