Open Access
September 2020 Solution of the Kolmogorov equation for TASEP
Mihai Nica, Jeremy Quastel, Daniel Remenik
Ann. Probab. 48(5): 2344-2358 (September 2020). DOI: 10.1214/20-AOP1425


We provide a direct and elementary proof that the formula obtained in (Matetski, Quastel and Remenik (2016)) for the TASEP transition probabilities for general (one-sided) initial data solves the Kolmogorov backward equation. The same method yields the solution for the related PushASEP particle system.


Download Citation

Mihai Nica. Jeremy Quastel. Daniel Remenik. "Solution of the Kolmogorov equation for TASEP." Ann. Probab. 48 (5) 2344 - 2358, September 2020.


Received: 1 June 2019; Revised: 1 January 2020; Published: September 2020
First available in Project Euclid: 23 September 2020

MathSciNet: MR4152645
Digital Object Identifier: 10.1214/20-AOP1425

Primary: 60K35 , 82B23 , 82C22

Keywords: KPZ fixed point , KPZ universality class , PushASEP , TASEP

Rights: Copyright © 2020 Institute of Mathematical Statistics

Vol.48 • No. 5 • September 2020
Back to Top