Abstract
We study the absolute continuity with respect to the Lebesgue measure of the distribution of the nodal volume associated with a smooth, nondegenerate and stationary Gaussian field $(f(x),{x\in\mathbb{R}^{d}})$. Under mild conditions, we prove that in dimension $d\geq3$, the distribution of the nodal volume has an absolutely continuous component plus a possible singular part. This singular part is actually unavoidable bearing in mind that some Gaussian processes have a positive probability to keep a constant sign on some compact domain. Our strategy mainly consists in proving closed Kac–Rice type formulas allowing one to express the volume of the set $\{f=0\}$ as integrals of explicit functionals of $(f,\nabla f,\operatorname{Hess}(f))$ and next to deduce that the random nodal volume belongs to the domain of a suitable Malliavin gradient. The celebrated Bouleau–Hirsch criterion then gives conditions ensuring the absolute continuity.
Citation
Jürgen Angst. Guillaume Poly. "On the absolute continuity of random nodal volumes." Ann. Probab. 48 (5) 2145 - 2175, September 2020. https://doi.org/10.1214/19-AOP1418
Information