Open Access
March 2015 Planar Ising magnetization field I. Uniqueness of the critical scaling limit
Federico Camia, Christophe Garban, Charles M. Newman
Ann. Probab. 43(2): 528-571 (March 2015). DOI: 10.1214/13-AOP881

Abstract

The aim of this paper is to prove the following result. Consider the critical Ising model on the rescaled grid $a\mathbb{Z}^{2}$, then the renormalized magnetization field

\[\Phi^{a}:=a^{15/8}\sum_{x\in a\mathbb{Z}^{2}}\sigma_{x}\delta_{x},\]

seen as a random distribution (i.e., generalized function) on the plane, has a unique scaling limit as the mesh size $a\searrow0$. The limiting field is conformally covariant.

Citation

Download Citation

Federico Camia. Christophe Garban. Charles M. Newman. "Planar Ising magnetization field I. Uniqueness of the critical scaling limit." Ann. Probab. 43 (2) 528 - 571, March 2015. https://doi.org/10.1214/13-AOP881

Information

Published: March 2015
First available in Project Euclid: 2 February 2015

zbMATH: 1332.82012
MathSciNet: MR3305999
Digital Object Identifier: 10.1214/13-AOP881

Subjects:
Primary: 60G20 , 60G60 , 60K35 , 82B20 , 82B27

Keywords: conformal invariance , continuum scaling limit , critical Ising model , Euclidean field theory , FK clusters , magnetization field , Planar Ising model

Rights: Copyright © 2015 Institute of Mathematical Statistics

Vol.43 • No. 2 • March 2015
Back to Top