Abstract
We develop a nonanticipative calculus for functionals of a continuous semimartingale, using an extension of the Itô formula to path-dependent functionals which possess certain directional derivatives. The construction is based on a pathwise derivative, introduced by Dupire, for functionals on the space of right-continuous functions with left limits. We show that this functional derivative admits a suitable extension to the space of square-integrable martingales. This extension defines a weak derivative which is shown to be the inverse of the Itô integral and which may be viewed as a nonanticipative “lifting” of the Malliavin derivative.
These results lead to a constructive martingale representation formula for Itô processes. By contrast with the Clark–Haussmann–Ocone formula, this representation only involves nonanticipative quantities which may be computed pathwise.
Citation
Rama Cont. David-Antoine Fournié. "Functional Itô calculus and stochastic integral representation of martingales." Ann. Probab. 41 (1) 109 - 133, January 2013. https://doi.org/10.1214/11-AOP721
Information