Open Access
July 2012 Quenched asymptotics for Brownian motion of renormalized Poisson potential and for the related parabolic Anderson models
Xia Chen
Ann. Probab. 40(4): 1436-1482 (July 2012). DOI: 10.1214/11-AOP655

Abstract

Let $B_{s}$ be a $d$-dimensional Brownian motion and $\omega(dx)$ be an independent Poisson field on $\mathbb{R}^{d}$. The almost sure asymptotics for the logarithmic moment generating function

\[\log\mathbb{E}_{0}\exp\left\{\pm\theta\int_{0}^{t}\overline{V}(B_{s})\,ds\right\}\qquad (t\to\infty)\]

are investigated in connection with the renormalized Poisson potential of the form

\[\overline{V}(x)=\int_{\mathbb{R}^{d}}{\frac{1}{\vert y-x\vert^{p}}}[\omega(dy)-dy],\qquad x\in\mathbb{R}^{d}.\]

The investigation is motivated by some practical problems arising from the models of Brownian motion in random media and from the parabolic Anderson models.

Citation

Download Citation

Xia Chen. "Quenched asymptotics for Brownian motion of renormalized Poisson potential and for the related parabolic Anderson models." Ann. Probab. 40 (4) 1436 - 1482, July 2012. https://doi.org/10.1214/11-AOP655

Information

Published: July 2012
First available in Project Euclid: 4 July 2012

zbMATH: 1259.60094
MathSciNet: MR2978130
Digital Object Identifier: 10.1214/11-AOP655

Subjects:
Primary: 60F10 , 60G55 , 60J65 , 60K37 , 60K40

Keywords: Brownian motion in Poisson potential , Feynman–Kac representation , large deviations , Parabolic Anderson model , Poisson field , renormalization

Rights: Copyright © 2012 Institute of Mathematical Statistics

Vol.40 • No. 4 • July 2012
Back to Top