Open Access
September 2008 Superdiffusivity for a Brownian polymer in a continuous Gaussian environment
Sérgio Bezerra, Samy Tindel, Frederi Viens
Ann. Probab. 36(5): 1642-1675 (September 2008). DOI: 10.1214/07-AOP363

Abstract

This paper provides information about the asymptotic behavior of a one-dimensional Brownian polymer in random medium represented by a Gaussian field W on ℝ+×ℝ which is white noise in time and function-valued in space. According to the behavior of the spatial covariance of W, we give a lower bound on the power growth (wandering exponent) of the polymer when the time parameter goes to infinity: the polymer is proved to be superdiffusive, with a wandering exponent exceeding any α<3/5.

Citation

Download Citation

Sérgio Bezerra. Samy Tindel. Frederi Viens. "Superdiffusivity for a Brownian polymer in a continuous Gaussian environment." Ann. Probab. 36 (5) 1642 - 1675, September 2008. https://doi.org/10.1214/07-AOP363

Information

Published: September 2008
First available in Project Euclid: 11 September 2008

zbMATH: 1149.82032
MathSciNet: MR2440919
Digital Object Identifier: 10.1214/07-AOP363

Subjects:
Primary: 60G15 , 60K37 , 82D60

Keywords: Free energy , Gaussian field , Polymer model , random medium , wandering exponent

Rights: Copyright © 2008 Institute of Mathematical Statistics

Vol.36 • No. 5 • September 2008
Back to Top