Abstract
We consider the Ginzburg--Landau process on the lattice $\mathbb{Z}^d$ whose potential is a bounded perturbation of the Gaussian potential. We prove that the decay rate to equilibrium in the variance sense is $t^{-d/2}$ up to a~logarithmic correction, for any function $u$ with finite triple norm; that is, $|\!|\!| u |\!|\!| \;=\; \sum_{x\in \mathbb{Z}^d} \Vert \partial_{\eta_x} u \Vert_\infty < \infty$.
Citation
C. Landim. H. T. Yau. "Convergence to equilibrium of conservative particle systems on $\mathbb{Z}^{\bm{d}}$." Ann. Probab. 31 (1) 115 - 147, January 2003. https://doi.org/10.1214/aop/1046294306
Information