Open Access
October, 1994 $U$-Statistic Processes: A Martingale Approach
Winfried Stute
Ann. Probab. 22(4): 1725-1744 (October, 1994). DOI: 10.1214/aop/1176988480

Abstract

For i.i.d. data $X_1,\cdots, X_n$ and a kernel $h$, the associated $U$-statistic process is defined as $U_n (u, v) = \frac{1}{n(n-1)} \sum_{1\leq i\neq j\leq n} h(X_i, X_j)1_{\{X_i\leq u,X_j\leq \nu\}}.$ Variants of these processes occur, for example, in the representation of the product-limit estimator of a lifetime distribution for censored/truncated data or in trimmed $U$-statistics. We derive an almost sure representation of $U_n$ under weak moment assumptions on $h$. Proofs rely on a proper decomposition of the remainder term into strong two-parameter martingales.

Citation

Download Citation

Winfried Stute. "$U$-Statistic Processes: A Martingale Approach." Ann. Probab. 22 (4) 1725 - 1744, October, 1994. https://doi.org/10.1214/aop/1176988480

Information

Published: October, 1994
First available in Project Euclid: 19 April 2007

zbMATH: 0832.62043
MathSciNet: MR1331201
Digital Object Identifier: 10.1214/aop/1176988480

Subjects:
Primary: 62G30
Secondary: 60G42 , 62G05

Keywords: $U$-statistic processes , Hajek projection , martingale decomposition , Maximal inequalities

Rights: Copyright © 1994 Institute of Mathematical Statistics

Vol.22 • No. 4 • October, 1994
Back to Top