Abstract
Let $X_{n,i}$ denote an infinitesimal array of independent random variables with convergent partial sums $Z_n = \sum^n_{i=1} X_{n,i} -a_n \rightarrow_\mathscr{D}\xi$. Throughout, we find conditions for the convergence of the portion $k_n$ of lower extremes $L_n(k_n) = \sum^{k_n}_{i=1}X_{i:n} - b_n$ given by order statistics $X_{i:n}$. Similarly, $W_n(r_n)$ denotes the sum of the $r_n$ upper extremes and $M_n = Z_n - L_n - W_n$ stands for the middle part of the sum. It is shown that $(L_n, M_n, W_n) \rightarrow_\mathscr{D} (\xi_1, \xi_2, \xi_3)$ jointly converges for various sequences $k_n, r_n \rightarrow \infty$, where the components of the limit law are independent such that $\xi_1 + \xi_2 + \xi_3 =_\mathscr{D} \xi$. The limit of the middle part $\xi_2$ is asymptotically normal and $\xi_1 (\xi_3)$ gives the negative (positive) spectral Poisson part of $\xi$. In the case of a compound Poisson limit distribution we obtain rates of convergence that can be used for applications to insurance mathematics.
Citation
Arnold Janssen. "Sums of Independent Triangular Arrays and Extreme Order Statistics." Ann. Probab. 22 (4) 1766 - 1793, October, 1994. https://doi.org/10.1214/aop/1176988482
Information