Open Access
October, 1994 Stable Processes with Sample Paths in Orlicz Spaces
Rimas Norvaisa, Gennady Samorodnitsky
Ann. Probab. 22(4): 1904-1929 (October, 1994). DOI: 10.1214/aop/1176988489

Abstract

Let $X = \{X(t); t \in T\}$ be a measurable symmetric $\alpha$-stable process, $0 < \alpha < 2$. In this paper necessary and sufficient conditions for $X$ to have almost all sample paths in an Orlicz space $\mathbb{L}_\psi(T, \mu)$ with a function $\psi$ satisfying the $\Delta_2$-condition are given.

Citation

Download Citation

Rimas Norvaisa. Gennady Samorodnitsky. "Stable Processes with Sample Paths in Orlicz Spaces." Ann. Probab. 22 (4) 1904 - 1929, October, 1994. https://doi.org/10.1214/aop/1176988489

Information

Published: October, 1994
First available in Project Euclid: 19 April 2007

zbMATH: 0841.60025
MathSciNet: MR1331210
Digital Object Identifier: 10.1214/aop/1176988489

Subjects:
Primary: 62G17
Secondary: 60B11 , 60E07

Keywords: convergence of random series in vector spaces , Orlicz spaces , sample paths , Stable processes

Rights: Copyright © 1994 Institute of Mathematical Statistics

Vol.22 • No. 4 • October, 1994
Back to Top