Open Access
October, 1994 On Conditioning a Random Walk to Stay Nonnegative
J. Bertoin, R. A. Doney
Ann. Probab. 22(4): 2152-2167 (October, 1994). DOI: 10.1214/aop/1176988497

Abstract

Let $S$ be a real-valued random walk that does not drift to $\infty$, so $P(S_k \geq 0$ for all $k) = 0$. We condition $S$ to exceed $n$ before hitting the negative half-line, respectively, to stay nonnegative up to time $n$. We study, under various hypotheses, the convergence of these conditional laws as $n \rightarrow \infty$. First, when $S$ oscillates, the two approximations converge to the same probability law. This feature may be lost when $S$ drifts to $-\infty$. Specifically, under suitable assumptions on the upper tail of the step distribution, the two approximations then converge to different probability laws.

Citation

Download Citation

J. Bertoin. R. A. Doney. "On Conditioning a Random Walk to Stay Nonnegative." Ann. Probab. 22 (4) 2152 - 2167, October, 1994. https://doi.org/10.1214/aop/1176988497

Information

Published: October, 1994
First available in Project Euclid: 19 April 2007

zbMATH: 0834.60079
MathSciNet: MR1331218
Digital Object Identifier: 10.1214/aop/1176988497

Subjects:
Primary: 60J15
Secondary: 60G50

Keywords: $h$-transform , conditional law , ladder variable , limit theorems , Random walk

Rights: Copyright © 1994 Institute of Mathematical Statistics

Vol.22 • No. 4 • October, 1994
Back to Top