Open Access
October, 1994 On Chung's Law of the Iterated Logarithm for Some Stochastic Integrals
Bruno Remillard
Ann. Probab. 22(4): 1794-1802 (October, 1994). DOI: 10.1214/aop/1176988483

Abstract

We prove that there exists a constant $a(A) \in (0, \infty)$ such that $\lim \inf_{t \rightarrow \infty} (\log \log t/t)\sup_{0 \leq s \leq t}|\int^s_0\langle AW_u, dW_u\rangle | = a(A)$ with probability 1, where $A$ is a skew-symmetric $d \times d$ matrix, $A \neq 0$, and $\{W_t\}_{t\geq 0}$ is a $d$-dimensional Wiener process.

Citation

Download Citation

Bruno Remillard. "On Chung's Law of the Iterated Logarithm for Some Stochastic Integrals." Ann. Probab. 22 (4) 1794 - 1802, October, 1994. https://doi.org/10.1214/aop/1176988483

Information

Published: October, 1994
First available in Project Euclid: 19 April 2007

zbMATH: 0840.60030
MathSciNet: MR1331204
Digital Object Identifier: 10.1214/aop/1176988483

Subjects:
Primary: 60F15
Secondary: 60F10 , 60H05

Keywords: Chung's law of the iterated logarithm , large deviations , Levy's area process , stochastic integrals

Rights: Copyright © 1994 Institute of Mathematical Statistics

Vol.22 • No. 4 • October, 1994
Back to Top