Abstract
We prove that there exists a constant $a(A) \in (0, \infty)$ such that $\lim \inf_{t \rightarrow \infty} (\log \log t/t)\sup_{0 \leq s \leq t}|\int^s_0\langle AW_u, dW_u\rangle | = a(A)$ with probability 1, where $A$ is a skew-symmetric $d \times d$ matrix, $A \neq 0$, and $\{W_t\}_{t\geq 0}$ is a $d$-dimensional Wiener process.
Citation
Bruno Remillard. "On Chung's Law of the Iterated Logarithm for Some Stochastic Integrals." Ann. Probab. 22 (4) 1794 - 1802, October, 1994. https://doi.org/10.1214/aop/1176988483
Information