Abstract
Let $X_1, X_2,\ldots$, be a sequence of independent and identically distributed random variables. We find sequences of norming and centering constants $\alpha_n$ and $\beta_n$ such that a universal Chung-type law of the iterated logarithm holds, namely, $\lim \inf_{n\rightarrow \infty} \max_{1\leq k \leq n}|S_k - k\beta_n|/\alpha_n < \infty$ almost surely, where $S_k$ denotes the sum of the first $k$ of $X_1, X_2,\ldots, k \geq 1$. If the underlying distribution function is in the Feller class, we show that this $\lim \inf$ is strictly positive with probability 1.
Citation
Uwe Einmahl. David M. Mason. "A Universal Chung-Type Law of the Iterated Logarithm." Ann. Probab. 22 (4) 1803 - 1825, October, 1994. https://doi.org/10.1214/aop/1176988484
Information