Open Access
October, 1994 A Universal Chung-Type Law of the Iterated Logarithm
Uwe Einmahl, David M. Mason
Ann. Probab. 22(4): 1803-1825 (October, 1994). DOI: 10.1214/aop/1176988484

Abstract

Let $X_1, X_2,\ldots$, be a sequence of independent and identically distributed random variables. We find sequences of norming and centering constants $\alpha_n$ and $\beta_n$ such that a universal Chung-type law of the iterated logarithm holds, namely, $\lim \inf_{n\rightarrow \infty} \max_{1\leq k \leq n}|S_k - k\beta_n|/\alpha_n < \infty$ almost surely, where $S_k$ denotes the sum of the first $k$ of $X_1, X_2,\ldots, k \geq 1$. If the underlying distribution function is in the Feller class, we show that this $\lim \inf$ is strictly positive with probability 1.

Citation

Download Citation

Uwe Einmahl. David M. Mason. "A Universal Chung-Type Law of the Iterated Logarithm." Ann. Probab. 22 (4) 1803 - 1825, October, 1994. https://doi.org/10.1214/aop/1176988484

Information

Published: October, 1994
First available in Project Euclid: 19 April 2007

zbMATH: 0837.60028
MathSciNet: MR1331205
Digital Object Identifier: 10.1214/aop/1176988484

Subjects:
Primary: 60F15
Secondary: 60E07

Keywords: Feller class , Law of the iterated logarithm , quantile function

Rights: Copyright © 1994 Institute of Mathematical Statistics

Vol.22 • No. 4 • October, 1994
Back to Top