Open Access
January, 1994 A Transient Random Walk on Stochastic Matrices with Dirichlet Distributions
Jean-Francois Chamayou, Gerard Letac
Ann. Probab. 22(1): 424-430 (January, 1994). DOI: 10.1214/aop/1176988865

Abstract

Let $X_1$ be a $(d \times d)$ random stochastic matrix such that the rows of $X_1$ are independent, with Dirichlet distributions. The rows of the $(d \times d)$ matrix $A$ are the parameters of these Dirichlet distributions, and we assume that the sums of the rows and columns of $A$ provide the same vector $r = (r_1,\ldots,r_d)$. If $(X_n)^\infty_{n=1}$ are i.i.d., we prove that $\lim_{n\rightarrow\infty}(X_n \cdots X_1)$ almost surely has identical rows, which are Dirichlet distributed with parameter $r$. Van Assche has proved this for $d = 2$ and four identical entries for $A$.

Citation

Download Citation

Jean-Francois Chamayou. Gerard Letac. "A Transient Random Walk on Stochastic Matrices with Dirichlet Distributions." Ann. Probab. 22 (1) 424 - 430, January, 1994. https://doi.org/10.1214/aop/1176988865

Information

Published: January, 1994
First available in Project Euclid: 19 April 2007

zbMATH: 0807.60066
MathSciNet: MR1258883
Digital Object Identifier: 10.1214/aop/1176988865

Subjects:
Primary: 60J15
Secondary: 60E10

Keywords: characterization of Dirichlet distributions , perturbation of Markov chains , Products of random matrices

Rights: Copyright © 1994 Institute of Mathematical Statistics

Vol.22 • No. 1 • January, 1994
Back to Top