Open Access
January, 1994 A Remark on Convergence in Distribution of $U$-Statistics
Evarist Gine, Joel Zinn
Ann. Probab. 22(1): 117-125 (January, 1994). DOI: 10.1214/aop/1176988850

Abstract

It is proved that, for $h$ measurable and symmetric in its arguments and $X_i$ i.i.d., if the sequence $\{n^{-m/2} \sum_{i_1,\ldots,i_m\leq n,i_j\neq i_k \text{if} j\neq k} h(X_{i_1},\ldots, X_{i_m})\}^\infty_{n=1}$ is stochastically bounded, then $Eh^2 < \infty$ and $Eh(X_1,x_2,\ldots,x_m) = 0$ a.s.

Citation

Download Citation

Evarist Gine. Joel Zinn. "A Remark on Convergence in Distribution of $U$-Statistics." Ann. Probab. 22 (1) 117 - 125, January, 1994. https://doi.org/10.1214/aop/1176988850

Information

Published: January, 1994
First available in Project Euclid: 19 April 2007

zbMATH: 0801.60015
MathSciNet: MR1258868
Digital Object Identifier: 10.1214/aop/1176988850

Subjects:
Primary: 60F05
Secondary: 60E15

Keywords: $U$-statistics , Decoupling , necessary conditions for convergence in distribution

Rights: Copyright © 1994 Institute of Mathematical Statistics

Vol.22 • No. 1 • January, 1994
Back to Top