Open Access
January, 1989 A Sharp Deviation Inequality for the Stochastic Traveling Salesman Problem
WanSoo T. Rhee, Michel Talagrand
Ann. Probab. 17(1): 1-8 (January, 1989). DOI: 10.1214/aop/1176991490

Abstract

Let $T_n$ denote the length of the shortest closed path connecting $n$ random points uniformly distributed over the unit square. We prove that for some number $K$, we have, for all $t \geq 0$, $P(|T_n - E(T_n)| \geq t) \leq K \exp(-t^2/K).$

Citation

Download Citation

WanSoo T. Rhee. Michel Talagrand. "A Sharp Deviation Inequality for the Stochastic Traveling Salesman Problem." Ann. Probab. 17 (1) 1 - 8, January, 1989. https://doi.org/10.1214/aop/1176991490

Information

Published: January, 1989
First available in Project Euclid: 19 April 2007

zbMATH: 0682.68058
MathSciNet: MR972767
Digital Object Identifier: 10.1214/aop/1176991490

Subjects:
Primary: 68C25
Secondary: 60G48 , 65K05 , 90C10

Keywords: exponential tail , martingale inequalities , Shortest path , Stochastic model

Rights: Copyright © 1989 Institute of Mathematical Statistics

Vol.17 • No. 1 • January, 1989
Back to Top