Open Access
January, 1989 A Central Limit Theorem for Two-Dimensional Random Walks in Random Sceneries
Erwin Bolthausen
Ann. Probab. 17(1): 108-115 (January, 1989). DOI: 10.1214/aop/1176991497

Abstract

Let $S_n, n \in \mathbb{N}$, be a recurrent random walk on $\mathbb{Z}^2 (S_0 = 0)$ and $\xi(\alpha), \alpha \in \mathbb{Z}^2$, be i.i.d. $\mathbb{R}$-valued centered random variables. It is shown that $\sum^n_{i = 1}\xi(S_i)/ \sqrt{n \log n}$ satisfies a central limit theorem. A functional version is presented.

Citation

Download Citation

Erwin Bolthausen. "A Central Limit Theorem for Two-Dimensional Random Walks in Random Sceneries." Ann. Probab. 17 (1) 108 - 115, January, 1989. https://doi.org/10.1214/aop/1176991497

Information

Published: January, 1989
First available in Project Euclid: 19 April 2007

zbMATH: 0679.60028
MathSciNet: MR972774
Digital Object Identifier: 10.1214/aop/1176991497

Subjects:
Primary: 60F05
Secondary: 60J15 , 60K35

Keywords: central limit theorem , Random scenery , Random walk

Rights: Copyright © 1989 Institute of Mathematical Statistics

Vol.17 • No. 1 • January, 1989
Back to Top