Abstract
Let $S_n, n \in \mathbb{N}$, be a recurrent random walk on $\mathbb{Z}^2 (S_0 = 0)$ and $\xi(\alpha), \alpha \in \mathbb{Z}^2$, be i.i.d. $\mathbb{R}$-valued centered random variables. It is shown that $\sum^n_{i = 1}\xi(S_i)/ \sqrt{n \log n}$ satisfies a central limit theorem. A functional version is presented.
Citation
Erwin Bolthausen. "A Central Limit Theorem for Two-Dimensional Random Walks in Random Sceneries." Ann. Probab. 17 (1) 108 - 115, January, 1989. https://doi.org/10.1214/aop/1176991497
Information