Abstract
If $\{Z_n\}^\infty_0$ is a critical branching process such that $E_1Z^2_1 < \infty$, then $(\log n)^{-1}E_iM_n \rightarrow i$, where $E_i$ refers to starting with $Z_0 = i$ and $M_n = \max_{0\leq j \leq n}Z_j$. This improves the earlier results of Weiner [9] and Pakes [7].
Citation
K. B. Athreya. "On the Maximum Sequence in a Critical Branching Process." Ann. Probab. 16 (2) 502 - 507, April, 1988. https://doi.org/10.1214/aop/1176991770
Information