Abstract
Let $L = \frac{1}{2} \nabla \cdot a\nabla + b \cdot \nabla$ generate a diffusion process on $R^d$. An expression involving $a$ and $b$ on $1 \leq |x| \leq n$ and two functions $g$ and $h$, varied over suitable domains, attains its mini-max value at $\lambda_n$. It is shown that $\lim_{n\rightarrow\infty}\lambda_n = 0$ or $\lim_{n\rightarrow\infty} \lambda_n > 0$ according to whether the process is recurrent or transient.
Citation
Ross G. Pinsky. "A Mini-Max Variational Formula Giving Necessary and Sufficient Conditions for Recurrence or Transience of Multidimensional Diffusion Processes." Ann. Probab. 16 (2) 662 - 671, April, 1988. https://doi.org/10.1214/aop/1176991779
Information