Abstract
If $(\xi^A(t), t \geq 0)$ is the contact process with initial configuration $A, f: \mathscr{P}(\mathbb{Z}) \rightarrow \mathbb{R}$ is any cylindrical function and $|A| = \infty$, we prove a central limit theorem for $(f(\xi^A(t)), t \geq 0)$ when the rate of infection is supercritical.
Citation
Roberto Henrique Schonmann. "Central Limit Theorem for the Contact Process." Ann. Probab. 14 (4) 1291 - 1295, October, 1986. https://doi.org/10.1214/aop/1176992370
Information