Open Access
October, 1986 Central Limit Theorem for the Contact Process
Roberto Henrique Schonmann
Ann. Probab. 14(4): 1291-1295 (October, 1986). DOI: 10.1214/aop/1176992370

Abstract

If $(\xi^A(t), t \geq 0)$ is the contact process with initial configuration $A, f: \mathscr{P}(\mathbb{Z}) \rightarrow \mathbb{R}$ is any cylindrical function and $|A| = \infty$, we prove a central limit theorem for $(f(\xi^A(t)), t \geq 0)$ when the rate of infection is supercritical.

Citation

Download Citation

Roberto Henrique Schonmann. "Central Limit Theorem for the Contact Process." Ann. Probab. 14 (4) 1291 - 1295, October, 1986. https://doi.org/10.1214/aop/1176992370

Information

Published: October, 1986
First available in Project Euclid: 19 April 2007

zbMATH: 0615.60095
MathSciNet: MR866350
Digital Object Identifier: 10.1214/aop/1176992370

Subjects:
Primary: 60K35
Secondary: 60F05

Keywords: central limit theorem , contact process

Rights: Copyright © 1986 Institute of Mathematical Statistics

Vol.14 • No. 4 • October, 1986
Back to Top