Abstract
We consider the asymptotic distribution properties of $f$-expansion digits. In particular, if $x = 1/\varphi_0(x) - 1/\varphi_1(x) - \cdots$ etc., then $\frac{1}{n} \sum^{n-1}_{k=0} \varphi_k \rightarrow 3 \text{in measure}.$
Citation
Jon Aaronson. "Random $f$-Expansions." Ann. Probab. 14 (3) 1037 - 1057, July, 1986. https://doi.org/10.1214/aop/1176992457
Information