Open Access
January, 1986 On Ito Stochastic Integration with Respect to $p$-Stable Motion: Inner Clock, Integrability of Sample Paths, Double and Multiple Integrals
J. Rosinski, W. A. Woyczynski
Ann. Probab. 14(1): 271-286 (January, 1986). DOI: 10.1214/aop/1176992627

Abstract

The paper studies in detail the sample paths of Ito-type stochastic integrals with respect to $p$-stable motion $M(t), t \geq 0$. These results, in turn, permit an analysis of the concept of multiple $p$-stable integrals of the form $\int \cdots \int f(t_1,\cdots, t_n)dM(t_1) \cdots dM(t_n)$, and, in particular, a full description of functions of two variables $f(t_1, t_2)$ for which the double stochastic integral $\int \int f(t_1, t_2) dM(t_1) dM(t_2)$ exists.

Citation

Download Citation

J. Rosinski. W. A. Woyczynski. "On Ito Stochastic Integration with Respect to $p$-Stable Motion: Inner Clock, Integrability of Sample Paths, Double and Multiple Integrals." Ann. Probab. 14 (1) 271 - 286, January, 1986. https://doi.org/10.1214/aop/1176992627

Information

Published: January, 1986
First available in Project Euclid: 19 April 2007

zbMATH: 0594.60056
MathSciNet: MR815970
Digital Object Identifier: 10.1214/aop/1176992627

Subjects:
Primary: 60H05
Secondary: 60B11 , 60G17

Keywords: $p$-stable motion , Ito stochastic integral , multiple Wiener-Ito integrals

Rights: Copyright © 1986 Institute of Mathematical Statistics

Vol.14 • No. 1 • January, 1986
Back to Top