Open Access
August, 1985 The Size of an Analytic Function as Measured by Levy's Time Change
Terry R. McConnell
Ann. Probab. 13(3): 1003-1005 (August, 1985). DOI: 10.1214/aop/1176992921

Abstract

For $f$ analytic in the unit disc put $\nu(f) = \int^\tau_0 |f'(B(s))|^2 ds$ where $\tau$ is the exit time of Brownian motion $B(t)$ from the disc. We prove that $E\Phi(\tau) \leq E\Phi(\nu(f))$ for all $f$ satisfying $|f'(0)| = 1$ and a wide class of $\Phi$. In particular, we may take $\Phi(\lambda) = |\lambda|^P$ for $0 < p < \infty$.

Citation

Download Citation

Terry R. McConnell. "The Size of an Analytic Function as Measured by Levy's Time Change." Ann. Probab. 13 (3) 1003 - 1005, August, 1985. https://doi.org/10.1214/aop/1176992921

Information

Published: August, 1985
First available in Project Euclid: 19 April 2007

zbMATH: 0574.60087
MathSciNet: MR799435
Digital Object Identifier: 10.1214/aop/1176992921

Subjects:
Primary: 60J65
Secondary: 30A42

Keywords: analytic functions , Brownian motion

Rights: Copyright © 1985 Institute of Mathematical Statistics

Vol.13 • No. 3 • August, 1985
Back to Top