Abstract
For $X_1, X_2, \cdots$ i.i.d. with finite mean and $Y_n = \max(X_1, \cdots, X_n) - cn, c$ positive, a number of authors have considered the problem of determining an optimal stopping rule for the reward sequence $Y_n$. The optimal stopping rule can be given explicitly in this case; however, in general its use requires complete knowledge of the distribution of the $X_i$. This paper examines the problem of approximating the optimal expected reward when only partial information about the distribution is available. Specifically, if the $X_i$ are known to be exponentially distributed with unknown mean, stopping rules designed to approximate the optimal rule (which can be used only when the mean is known) are proposed. Under certain conditions the difference between the expected reward using the proposed stopping rules and the optimal expected reward vanishes as $c$ approaches zero.
Citation
Adam T. Martinsek. "Approximations to Optimal Stopping Rules for Exponential Random Variables." Ann. Probab. 12 (3) 876 - 881, August, 1984. https://doi.org/10.1214/aop/1176993236
Information