Open Access
November, 1983 Some More Results on Increments of the Wiener Process
D. L. Hanson, Ralph P. Russo
Ann. Probab. 11(4): 1009-1015 (November, 1983). DOI: 10.1214/aop/1176993449

Abstract

Let $W(T)$ for $0 \leq T < \infty$ be a standard Weiner process and suppose that $c_k$ and $b_k$ are fixed sequences of real numbers satisfying $0 \leq c_k < b_k < \infty$. Let $K(\omega)$ be the set of limit points (as $T \rightarrow \infty$) of $\frac{W(b_k;\omega) - W(c_k;\omega)}{\{2(b_k - c_k)\lbrack\log(b_k/(b_k - c_k)) + \log\log b_k\rbrack\}^{1/2}}$ where $\omega$ is a point in the probability space on which $W(T)$ is defined. We give necessary conditions on $b_k$ and $c_k$ to have $K(\omega) = \lbrack -1, 1\rbrack$ a.s. We also give some related results and discuss sharpness.

Citation

Download Citation

D. L. Hanson. Ralph P. Russo. "Some More Results on Increments of the Wiener Process." Ann. Probab. 11 (4) 1009 - 1015, November, 1983. https://doi.org/10.1214/aop/1176993449

Information

Published: November, 1983
First available in Project Euclid: 19 April 2007

zbMATH: 0521.60033
MathSciNet: MR714963
Digital Object Identifier: 10.1214/aop/1176993449

Subjects:
Primary: 60F15
Secondary: 60G15 , 60G17

Keywords: delayed sums , Increments of a Wiener process , lag sums , Law of iterated logarithm , sums of random variables , Wiener process

Rights: Copyright © 1983 Institute of Mathematical Statistics

Vol.11 • No. 4 • November, 1983
Back to Top