Open Access
November, 1983 Limit Theorems for Certain Branching Random Walks on Compact Groups and Homogeneous Spaces
Svante Janson
Ann. Probab. 11(4): 909-930 (November, 1983). DOI: 10.1214/aop/1176993441

Abstract

A certain branching random walk, $\{X_i\}$, on a compact group or a compact homogeneous space is studied. It is proved that the sums $\sum^n_0f(X_i)$ are asymptotically normally distributed for all nice functions $f$ if and only if the Fourier coefficients of the transition probability distribution have real parts not exceeding $\frac{1}{2}$.

Citation

Download Citation

Svante Janson. "Limit Theorems for Certain Branching Random Walks on Compact Groups and Homogeneous Spaces." Ann. Probab. 11 (4) 909 - 930, November, 1983. https://doi.org/10.1214/aop/1176993441

Information

Published: November, 1983
First available in Project Euclid: 19 April 2007

zbMATH: 0544.60022
MathSciNet: MR714955
Digital Object Identifier: 10.1214/aop/1176993441

Subjects:
Primary: 60J80
Secondary: 60B15 , 60F05 , 60J15

Keywords: branching random walks , compact groups , limit theorems

Rights: Copyright © 1983 Institute of Mathematical Statistics

Vol.11 • No. 4 • November, 1983
Back to Top