Open Access
November, 1983 An Integral Test for the Rate of Escape of $d$-Dimensional Random Walk
Philip S. Griffin
Ann. Probab. 11(4): 953-961 (November, 1983). DOI: 10.1214/aop/1176993444

Abstract

Let $X_1, X_2, \cdots$ be a sequence of independent, identically distributed random variables taking values in $\mathbb{R}^d$ and $S_n = X_1 + \cdots + X_n$. For a large class of random variables, which includes all of those in the domain of attraction of a type $A$ stable law, an integral test is given which determines whether $P\{|S_n| \leq \gamma_n \mathrm{i.o.}\} = 0 \quad\text{or}\quad 1$ for any increasing sequence $\{\gamma_n\}$. This result generalizes the Dvoretzky-Erdos test for simple random walk and the Takeuchi and Taylor test for stable random walks.

Citation

Download Citation

Philip S. Griffin. "An Integral Test for the Rate of Escape of $d$-Dimensional Random Walk." Ann. Probab. 11 (4) 953 - 961, November, 1983. https://doi.org/10.1214/aop/1176993444

Information

Published: November, 1983
First available in Project Euclid: 19 April 2007

zbMATH: 0524.60068
MathSciNet: MR714958
Digital Object Identifier: 10.1214/aop/1176993444

Subjects:
Primary: 60J15
Secondary: 60F15

Keywords: domains of attraction , Integral test , probability estimates , Rate of escape

Rights: Copyright © 1983 Institute of Mathematical Statistics

Vol.11 • No. 4 • November, 1983
Back to Top